
Noname manuscript No.
(will be inserted by the editor)

Towards Satisfiability Modulo Parametric Bit-vectors

Aina Niemetz · Mathias Preiner · Andrew
Reynolds · Yoni Zohar ·
Clark Barrett · Cesare Tinelli

Received: date / Accepted: date

Abstract Many SMT solvers implement efficient SAT-based procedures for solving fixed-
size bit-vector formulas. These techniques, however, cannot be used directly to reason about
bit-vectors of symbolic bit-width. To address this shortcoming, we propose a translation
from bit-vector formulas with parametric bit-width to formulas in a logic supported by SMT
solvers that includes non-linear integer arithmetic, uninterpreted functions, and universal
quantification. While this logic is undecidable, our approach can still solve many formulas
that arise in practice by capitalizing on advances in SMT solving for non-linear arithmetic
and universally quantified formulas. We provide several case studies in which we have ap-
plied this approach with promising results, including the bit-width independent verification
of invertibility conditions, compiler optimizations, and bit-vector rewrite rules.1

This work was supported in part by DARPA (awards N66001-18-C-4012 and FA8650-18-2-7861), ONR
(award N68335-17-C-0558), NSF (award 1656926), and the Stanford Center for Blockchain Research.

Aina Niemetz
Stanford University, Stanford, USA

Mathias Preiner
Stanford University, Stanford, USA

Andrew Reynolds
The University of Iowa, Iowa City, USA

Yoni Zohar
Stanford University, Stanford, USA

Clark Barrett
Stanford University, Stanford, USA

Cesare Tinelli
The University of Iowa, Iowa City, USA

1 A preliminary version of this work was published in the proceedings of CADE-27 [23]. The current
article includes proofs, concrete axiomatizations for bitwise operators, more details on the evaluation, and a
list of conditional inverses for bit-vector literals.

https://orcid.org/0000-0003-2600-5283
https://orcid.org/0000-0002-7142-6258
https://orcid.org/0000-0002-3529-8682
https://orcid.org/0000-0002-2972-6695
https://orcid.org/0000-0002-9522-3084
https://orcid.org/0000-0002-9522-3084

2 Aina Niemetz et al.

1 Introduction

Satisfiability Modulo Theories (SMT) solving for the theory of fixed-size bit-vectors has
received a lot of interest in recent years. Many applications rely on bit-precise reasoning as
provided by SMT solvers, and the number of solvers that participate in the corresponding
divisions of the annual SMT competition is high and increasing. Although the satisfiability
problem in this domain is theoretically difficult (e.g., [17]), bit-vector solvers are in practice
highly efficient and typically implement SAT-based procedures.

Reasoning about fixed-size, i.e., fixed-width, bit-vectors suffices for many applications.
For instance, in hardware verification the size of a circuit is usually known in advance. In
software verification, machine integers are treated as fixed-width bit-vectors, with the width
depending on the underlying architecture. Correspondingly, current solving approaches in
SMT rely on this restriction and, as a consequence, cannot reason about parametric circuits
or machine integers of arbitrary size. This is a serious limitation when proving properties
that are bit-width independent, or when reasoning about machine integers of a fixed but
large size. For example, in smart contract languages such as Solidity [32], 256-bit integers
are widely used as addresses.

The current state of the art for solving bit-vector formulas involves a technique called
bit-blasting [18], an eager translation to propositional logic. However, it does not scale well
for larger bit-widths, in particular in the presence of operations that have a complex defini-
tion at the propositional level, such as multiplication. To address this limitation, we propose
a general method for reasoning about bit-vector formulas with parametric bit-width. The
essence of our method is to replace the translation from fixed-size bit-vectors to proposi-
tional logic with a translation to a quantified fragment of the combined theory of integer
arithmetic and uninterpreted functions. We obtain a fully automated verification process by
capitalizing on recent advances in SMT solving for these theories.

The reliability of our approach depends on the correctness of the SMT solvers in use. In-
teractive theorem provers, or proof assistants, such as Isabelle and Coq [24,33], on the other
hand, target applications where trust is of higher importance than automation, although sub-
stantial progress towards increasing the latter has been made in recent years [5]. Our long-
term goal is an efficient automated framework for proving bit-width independent properties
within a trusted proof assistant, which requires both a formalization of such properties in
the language of the proof assistant and the development of efficient automated techniques to
reason about these properties. Our encoding techniques make the latter feasible.

Translating a formula from the theory of parametric-width bit-vectors to the theory of in-
teger arithmetic is not straightforward. This is due to the fact that the semantics of bit-vector
operations of bit-width n are most naturally expressed using exponentiation terms 2n. Most
SMT solvers, however, do not support unrestricted exponentiation for integer arithmetic.
Further, operators such as bitwise and and or do not have a natural representation in integer
arithmetic. While they are definable in the theory of integer arithmetic using β-function en-
codings (e.g., [13]), such a translation is expensive as it requires an encoding of sequences
into natural numbers. Instead, we introduce an uninterpreted function (UF) for each of these
problematic operators and axiomatize them with quantified formulas, which shifts some of
the reasoning burden from arithmetic to UF reasoning. We consider two alternative axiom-
atization approaches: a complete one relying on induction, and a partial (hand-crafted) one
that can be understood as an under-approximation of the original problem.

To evaluate the potential of our approach, we examine three case studies that arise
from real applications where reasoning about bit-width independent properties is essential.
Niemetz et al. [22] introduced the notion of invertibility condition for bit-vector operators,

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 3

Symbol SMT-LIB Syntax Sort

≈, 6≈ =, distinct σ[n] × σ[n] → Bool

<u
BV, >u

BV, <s
BV, >s

BV bvult, bvugt, bvslt, bvsgt σ[n] × σ[n] → Bool

≤u
BV, ≥u

BV, ≤s
BV, ≥s

BV bvule, bvuge, bvsle, bvsge σ[n] × σ[n] → Bool

∼BV, −BV bvnot, bvneg σ[n] → σ[n]
&BV, |BV, ⊕BV bvand, bvor, bvxor σ[n] × σ[n] → σ[n]
<<BV, >>BV, >>aBV bvshl, bvlshr, bvashr σ[n] × σ[n] → σ[n]
+BV, ·BV, modBV, divBV bvadd, bvmul, bvurem, bvudiv σ[n] × σ[n] → σ[n]
[u : l]BV extract (0 ≤ l ≤ u < n) σ[n] → σ[u−l+1]

◦BV concatenation σ[n] × σ[m] → σ[n+m]

Table 1 Considered bit-vector operators with SMT-LIB 2 syntax.

and defined a large number of such conditions which they then used in a new procedure
for quantified bit-vector formulas. Because of the fixed-size setting, the correctness of those
conditions was only checked for specific range of bit-widths: from 1 to 65. As a first case
study, we consider here the bit-width independent verification of those invertibility condi-
tions, which Niemetz et al. [22] left to future work. As a second case study, we examine
the bit-width independent verification of compiler optimizations in LLVM. For that, we use
the Alive tool [20], which generates verification conditions for such optimizations in the
theory of fixed-size bit-vectors. Proving the correctness of these optimizations for arbitrary
bit-widths would ensure their correctness for any language or underlying architecture rather
than just for specific ones. As a third case study, we consider the bit-width independent ver-
ification of rewrite rules for the theory of fixed-size bit-vectors. SMT solvers for this theory
heavily rely on such rules to simplify the input. Verifying their correctness is essential and
is typically done by hand, which is both tedious and error-prone.

To summarize, this paper makes the following contributions.

– In Section 4, we study complete and incomplete encodings of bit-vector formulas with
parametric bit-width into integer arithmetic.

– In Section 5, we evaluate the effectiveness of these encodings in three case studies.
– As part of the first case study, we introduce conditional inverses for bit-vector con-

straints, thus augmenting the work of [22] with concrete parametric solutions.

Related Work Bit-width independent bit-vector formulas were studied by Picora [26], who
introduced a formal language for bit-vectors of parametric width, together with semantics
and a decision procedure. The language we use here is a simplified variant of that language.
A unification-based algorithm for bit-vectors of symbolic lengths is discussed by Bjørner
and Picora in [4]. Bit-width independent formulas are related to parametric Boolean func-
tions and circuits. An inductive approach for reasoning about such formalisms was devel-
oped by Gupta and Fisher [14, 15] by considering a Boolean function for the base case of a
circuit and another one for its inductive step. Reasoning about equivalence of such circuits
can be embedded in Picora’s formal framework of [26]. Our technique is based on a transla-
tion of parametric bit-vectors to integers. For the case of fixed-width bit-vectors, translations
of arithmetic bit-vector operations to integers have been studied, e.g., in [6, 7, 36].

4 Aina Niemetz et al.

2 Preliminaries

We briefly review the usual notions and terminology of many-sorted first-order logic with
equality. See [13, 34] for more detailed information.

Let S be a set of sort symbols, and for every sort σ ∈ S, let Xσ be an infinite set of
variables of sort σ. We assume that sets Xσ are pairwise disjoint and define X as the union
of setsXσ . A signatureΣ consists of a setΣs⊆ S of sort symbols and a setΣf of function
symbols. Arities of function symbols are defined in the usual many-sorted way. Constants
are treated as nullary functions. We assume that every signature Σ includes a Boolean sort
Bool and two constant symbols> (true) and⊥ (false) of sort Bool. Furthermore, we assume
thatΣ has an equality symbol≈ of arity σ×σ → Bool for each sort σ ∈ Σs. We call pred-
icate symbol any function symbol whose return sort is Bool. We use the usual definitions of
well-sorted terms, literals, and formulas as terms of sort Bool, and refer to them asΣ-terms,
Σ-literals, and Σ-formulas, respectively. We include the if-then-else operator ite(, ,) of
arity Bool× σ × σ → σ for each σ ∈ Σs.

We define x = (x1, ..., xn) as a tuple of variables and write Qxϕ with Q ∈ {∀,∃}
for a quantified formula Qx1 · · ·Qxnϕ. For a Σ-term s, we denote the free variables of s
(defined as usual) as FV(s) and use s[x] to denote that the free variables of s occur in x;
if Σ-terms t = (t1, ..., tn) is a tuple of terms we write s[t] for the term obtained from s
by simultaneously replacing each occurrence of xi in s by ti. A Σ-interpretation I maps:
each sort σ ∈ Σs to a distinct non-empty set of values σI (the domain of σ in I); each
variable x ∈ Xσ to an element xI ∈ σI ; and each function symbol fσ1···σnσ ∈ Σf to a
total function fI: σI1 × ...× σIn → σI if n > 0, and to an element in σI if n = 0. We use
the usual inductive definition of a satisfiability relation |= between Σ-interpretations and
Σ-formulas. Given a Σ-interpretation I and a sub-signature Σ′ of Σ, the reduct of I to Σ′

is obtained from I by restricting it to the sorts and symbols of Σ′.
A theory T is a pair (Σ, I), where Σ is a signature and I is a non-empty class of

Σ-interpretations that is closed under variable reassignment, i.e., if interpretation I′ only
differs from an I ∈ I in how it interprets variables, then also I′ ∈ I . Moreover, each inter-
pretation in I interprets≈ as the identity relation and Bool as the two-element set {>I ,⊥I}
and interprets a term of the form ite(c, s, t) as sI if cI = >I and as tI otherwise. A Σ-
formula ϕ is T -satisfiable (resp. T -unsatisfiable) if it is satisfied by some (resp. no) inter-
pretation in I; it is T -valid if it is satisfied by all interpretations in I . We will sometimes
omit T when the theory is understood from context.

The theory TBV = (ΣBV, IBV) of fixed-size bit-vectors as defined in the SMT-LIB 2
standard [3] consists of the class of interpretations IBV and signature ΣBV, which includes
a unique sort for each positive integer n (representing the bit-vector width), denoted here as
σ[n]. We consider a restricted set of bit-vector function and predicate symbols (or bit-vector
operators) as listed in Table 1. The selection of operators in this set is arbitrary but complete
in the sense that it suffices to express all bit-vector operators defined in SMT-LIB 2. For a
given positive integer n, the domain σ[n]

I of sort σ[n] in I is the set of all bit-vectors of size
n. We assume thatΣBV includes all bit-vector constants of sort σ[n] for each n, represented
as bit-strings. However, to simplify the notation we will sometimes denote them by the
corresponding natural number in {0, . . . , 2n−1}. All interpretations I ∈ IBV are identical
except for the value they assign to variables. They interpret sort and function symbols as
specified in SMT-LIB 2. In particular, all function symbols (of non-zero arity) in ΣfBV are
overloaded for every σ[n]∈ ΣsBV. We denote a ΣBV-term (or bit-vector term) t of width n
as t[n] when we want to specify its bit-width explicitly.

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 5

The SMT-LIB 2 definition of division by zero is worth mentioning. The expression
s divBV0 is defined as evaluating to a bit-vector with the same bit-width as s with all bits
set to 1. Similarly, expression smodBV0 is defined as evaluating to s. Details on these
semantics and their justification are given in the latest version of the SMT-LIB 2 standard.

We refer to the i-th bit of t[n] as t[i] with 0 ≤ i < n. We interpret t[0] as the least
significant bit (LSB), and t[n − 1] as the most significant bit (MSB), and denote bit ranges
over k from index j down to i as t[j : i]. The unsigned interpretation of a bit-vector t[n] as a
natural number is given by [t]N = Σn−1

i=0 t [i] · 2
i, and its signed interpretation as an integer

is given by [t]Z = −t [n− 1] · 2n−1 +
[
t[n− 2 : 0]BV

]
N.

The theory TIA = (ΣIA, IIA) of integer arithmetic is also defined as in the SMT-LIB 2
standard. The signature ΣIA includes a single sort Int, function and predicate symbols
{+,−, ·, div,mod, | |, <,≤, >,≥}, and a constant symbol for every non-negative inte-
ger value. We further extend ΣIA to include exponentiation, denoted in the usual way as
ab. Unlike in the theory of bit-vectors, div and mod are partial functions, as they are not
defined when their second argument is 0. Their semantics in this case is left unspecified in
the SMT-LIB 2 standard, and they are thus treated as uninterpreted functions. Hence, IIA is
the set of allΣIA-interpretations I that interpret the arithmetic operators as the usual integer
operators, and differ only for the values they assign to variables and to div and mod when
their second argument is zero. For a set F of function symbols whose arities have the form
Int × · · · × Int → Int, we write TFUFIA to denote the (combined) theory of uninterpreted
functions of F with integer arithmetic. Its signature ΣFUFIA is the union of the signature of
TIA with a disjoint signature containing the set F of function symbols, called uninterpreted
functions. TFUFIA consists of all ΣFUFIA-interpretations whose reduct to the signature ΣIA

is an interpretation of TIA.

3 Parametric Bit-Vector Formulas

We are interested in reasoning about (classes of) ΣBV-formulas that hold independently
from the specific width of the sorts assigned to their variables or terms. We formalize the
notion of parametric ΣBV-formulas in the following.

We fix two disjoint sets X∗ and Z∗ of variable and constant symbols, respectively, of
a new bit-vector sort of undetermined bit-width. The bit-width is provided by the first com-
ponent of a separate function pair ω = (ωb, ωN) which maps symbols x ∈ X∗ ∪ Z∗ to
ΣIA-terms without div and mod. These operators (which we did not encounter in map-
pings ω of practical problems) are easily expressible by introducing more variables and
using multiplication and addition, without having to deal with issues like division by zero.
We refer to ωb(x) as the symbolic bit-width assigned by ω to x. The second component of ω
is a map ωN from symbols z ∈ Z∗ to ΣIA-terms without div and mod. We call ωN(z)
the symbolic value assigned by ω to z. Let v = FV(ω) be the set of free (integer) vari-
ables occurring in the range of either ωb or ωN . We say that ω is admissible if for every
interpretation I ∈ IIA that interprets each variable in v as a positive integer, and for every
x ∈ X∗ ∪ Z∗, I also interprets ωb(x) as a positive integer.

Let t be a term (possibly a formula), built from the function symbols of ΣBV and
X∗ ∪ Z∗, ignoring their sorts. We refer to t as a parametric ΣBV-term (formula). One
can interpret t as a class of fixed-size bit-vector terms as follows. For each symbol x ∈ X∗
and integer n > 0, we associate a unique variable xn of (fixed) bit-vector sort σ[n]. Given
an admissible ω with v = FV(ω) and an interpretation I that maps each variable in v to a

6 Aina Niemetz et al.

positive integer, let t|ω[I] be the result of replacing all symbols x ∈ X∗ in t by the corre-
sponding bit-vector variable x[k] and all symbols x ∈ Z∗ in t by the bit-vector constant of
sort σ[k] corresponding to ωN(x)I mod 2k, where in both cases k is ωb(x)I . We say that t
is well-sorted under ω if ω is admissible and t|ω[I] is a well-sorted ΣBV-term for all I that
map variables in v to positive integers. Note that in the most general case, well-sortedness
and admissibility conditions may include non-linear multiplication and even exponentiation,
which makes the problem of determining them undecidable. As we shall see in Section 5,
however, there are interesting benchmarks that occur in practice and induce very simple
conditions that can be trivial to check.

Example 1 Let X∗ be the set {x} and Z∗ be the set {z0, z1}, where ωN(z0) = 0 and
ωN(z1) = 1. Let ϕ be the formula (x+BVx)+BVz1 6≈ z0. We have that ϕ is well-sorted
under (ωb, ωN) with ωb = {x 7→ a, z0 7→ a, z1 7→ a} or ωb = {x 7→ 3, z0 7→ 3, z1 7→ 3}.
It is not well-sorted when ωb = {x 7→ a1, z0 7→ a1, z1 7→ a2} since ϕ|ω[I] is not a well-
sorted ΣBV-formula whenever aI1 6= aI2 . Note that an ω where ωb(x) = a1 − a2 is not
admissible, since (a1 − a2)I ≤ 0 is possible even when aI1 > 0 and aI2 > 0.

Notice that symbolic constants such as the maximum unsigned constant of a symbolic
length w can be represented by introducing z ∈ Z∗ with ωb(z) = w and ωN(z) = 2w − 1.
Furthermore, recall that signature ΣBV includes the (postfix) bit-vector extract operator
[u : l]BV whose name is parameterized by two natural numbers u and l. We do not lift
the above definitions to handle extract operations. This is for simplicity and comes at no
loss of expressive power, since constraints involving extract can be equivalently expressed
using constraints involving concatenation. For example, showing that every instance of a
constraint s ≈ t[u : l]BV is satisfiable, where 0 < l ≤ u < n− 1, is equivalent to showing
that ∀y1∀y2∀y3(t ≈ y1◦BV(y2◦BVy3) ⇒ s ≈ y2) is satisfiable where y1, y2, y3 are fresh
variables of sort σ[n−1−u], σ[u−l+1], σ[l], respectively. We may reason about a formula
involving a symbolic range {l, . . . , u} of t by considering a parametric bit-vector formula
that encodes a formula of the latter form, where the appropriate symbolic bit-widths are
assigned to symbols introduced for y1, y2, y3.

For every admissible ω, we extend ω to bit-vector terms t that are well sorted under ω
so that t|ω[I] has sort σ[ωb(t)I] for all interpretations I that map variables in FV(ω) to pos-
itive integers. Intuitively, ω(t) is computed recursively by computing ω for each immediate
subterm of t and then applying the typing rules of the operators in ΣBV. The formal defi-
nition of ωb is by induction on terms. The base cases are already defined. ωb(�t) = ωb(t)
for � ∈

{
−BV,∼ BV

}
. For the binary operators of Table 1 (except for extraction which can

be eliminated as described above), we set ωb(�(t1, t2)) = ωb(t2) if � is not ◦BV. For con-
catenation, ωb(t1◦BVt2) = ωb(t1) + ωb(t2). In turn, ωN is extended to complex terms by
evaluating them according to the semantics given by the SMT-LIB 2 standard. For example,
ωN(t1 +

BVt2) is ωN(t1) + ωN(t2) mod 2ω
b(t2).

Finally, we extend the notion of validity to parametric bit-vector formulas. Given a for-
mula ϕ well sorted under ω, we say ϕ is TBV-valid under ω if ϕ|ω[I] is TBV-valid for all I
that map variables in FV(ω) to positive integers.

4 Encoding Parametric Bit-Vector Formulas in SMT

Current SMT solvers do not support reasoning about parametric bit-vector formulas. In this
section, we present a technique for encoding such formulas into formulas involving non-
linear integer arithmetic, uninterpreted functions, and universal quantifiers. In SMT-LIB

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 7

parlance, these are formulas in the UFNIA logic. Given a quantifier-free formula ϕ that is
well-sorted under some mapping ω, we describe this encoding in terms of a translation T ,
which returns a formula ψ that is valid in the theory of uninterpreted functions with integer
arithmetic only if ϕ is TBV-valid under ω. We describe several variations on this translation
and discuss their relative strengths and weaknesses.

4.1 Introducing the Encoding

Overall Approach At a high level, our translation produces an implication whose an-
tecedent requires the integer variables to be in the correct ranges (e.g., k > 0 for every
bit-width variable k), and whose conclusion is the result of converting each (parametric)
bit-vector term of bit-width k to an integer term. Operations on parametric bit-vector terms
are converted to operations on the integers modulo 2k, where k can be a symbolic (i.e., un-
interpreted) constant. We first introduce uninterpreted functions that will be used in our
translation. Note that SMT solvers may not support the full set of functions in our ex-
tended signature ΣIA, since they typically do not support exponentiation. Our translation,
however, requires a limited form of exponentiation. Therefore, we introduce an uninter-
preted function symbol pow2 of arity Int → Int, whose intended semantics is the function
λx.2x when the argument x is non-negative. Second, for each (non-predicate) n-ary func-
tion fBV(with n > 0) of arity σ1 × · · · × σn → σ in the signature of fixed-size bit-vectors
ΣBV (excluding bit-vector extraction), we introduce an uninterpreted function fN of arity
Int×Int×· · ·×Int→ Int, where the extra argument is used to specify the bit-width. For ex-
ample, for +BV with arity σ[n]×σ[n] → σ[n], we introduce +N of arity Int×Int×Int→ Int.
In its intended semantics, this function adds the second and third arguments, both integers,
and returns the result modulo 2k, where k is the first argument. The signature ΣBV con-
tains one function, bit-vector concatenation ◦BV, whose two arguments may have different
sorts. For this case, the first argument of ◦N indicates the bit-width of the third argument,
i.e., ◦N(k, x, y) is interpreted as the concatenation of x and y, where y is an integer that
encodes a bit-vector of bit-width k; the bit-width for x is not specified by an argument, as
it is not needed for the elimination of this operator we perform later. We introduce unin-
terpreted functions for each bit-vector predicate symbol in a similar fashion. For instance,
≥uN has arity Int × Int × Int → Bool and encodes whether its second argument is greater
than or equal to its third argument when these two arguments are interpreted as unsigned
bit-vector values whose bit-width is given by its first argument. Most of these uninterpreted
functions are eliminated as described below. However, pow2, &N, |N and ⊕N are not elimi-
nated. Depending on the variation of the encoding, our translation may introduce quantified
formulas that fully axiomatize the behavior of these remaining uninterpreted functions or
add (quantified) lemmas that state some key properties about them, or both.

Translation Function Figure 1 defines our translation function TA, which is parameter-
ized by an axiomatization mode A. Given an input formula ϕ that is well-sorted under ω,
it returns the implication whose antecedent is an axiomatization formula AXA(ϕ, σ) and
whose conclusion is the result of converting ϕ to its encoded version via the conversion
function CONV. The former is dependent upon the axiomatization mode A which we dis-
cuss later. We assume without loss of generality that ϕ contains no applications of bit-vector
extract, which can be eliminated as described in the previous section, nor does it contain
concrete bit-vector constants, since these can be equivalently represented by introducing a

8 Aina Niemetz et al.

TA(ϕ, ω):
Return AXA(ϕ, ω)⇒ CONV(ϕ, ω).

CONV (e, ω):
Match e:
x → χ(x) if x ∈ X∗
z → ωN(z) mod pow2(ωb(z)) if z ∈ Z∗
t1 ≈ t2 → CONV(t1, ω) ≈ CONV(t2, ω)
fBV(t1, . . . , tn) → ELIM(fN(ωb(tn), CONV(t1, ω), . . . , CONV(tn, ω)))
./(ϕ1, . . . , ϕn) → ./(CONV(ϕ1, ω), . . . , CONV(ϕn, ω)) ./ ∈ {∧,∨,⇒,¬,⇔}

ELIM (e):
Match e:
+N(k, x, y) → (x+ y) mod pow2(k)
−N(k, x, y) → (x− y) mod pow2(k)
·N(k, x, y) → (x · y) mod pow2(k)
divN(k, x, y) → ite(y ≈ 0, pow2(k)− 1, x div y)
modN(k, x, y) → ite(y ≈ 0, x, x mod y)
∼ N(k, x) → pow2(k)− (x+ 1)
−N(k, x) → (pow2(k)− x) mod pow2(k)
<<N(k, x, y) → (x · pow2(y)) mod pow2(k)
>>N(k, x, y) → (x div pow2(y)) mod pow2(k)
◦N(k, x, y) → x · pow2(k) + y
./Nu(k, x, y) → x ./ y ./∈ {<,≤, >,≥}
./Ns (k, x, y) → utsk(x) ./ utsk(y) ./∈ {<,≤, >,≥}

utsk(x):
Return 2 · (x mod pow2(k − 1))− x.

Fig. 1 Translation TA for parametric bit-vector formulas, parameterized by axiomatization mode A.

symbol in Z∗ with the appropriate concrete mappings in ωb and ωN . For simplicity, we
present only the case where ϕ is quantifier-free. Quantifiers can be handled in the expected
way: every bound bit-vector variable is replaced with a bound integer variable. The needed
range-constraints are then added conjunctively to the matrix of an existential quantifier, and
as a premise of an implication in the case of a universal quantifier..2

In the translation, we use an auxiliary function CONV which converts parametric bit-
vector expressions into integer expressions with uninterpreted functions. Parametric bit-
vector variables x (that is, symbols from X∗) are replaced by unique integer variables of
sort Int, where we assume a mapping χ that maintains this correspondence and is such that
the range of χ does not include any variable occurring in FV(ω). Parametric bit-vector con-
stants z (that is, symbols from set Z∗) are replaced by the term ωN(z) mod pow2(ωb(z)).
Observe that the ranges of the maps in ω may contain arbitrary ΣIA-symbols (other than
div and mod). In practice, however, our translation handles only cases where these terms
contain symbols supported by the SMT solver, as well as terms of the form 2t, which we
assume are replaced by pow2(t) during this translation. For instance, if ωb(z) = w+ v and
ωN(z) = 2w − 1, then CONV(z, ω) returns (pow2(w)− 1) mod pow2(w + v).

Equalities are processed by CONV by recursively running the translation on both sides.
The next case handles applications of symbols from the signature ΣBV, where symbols
fBV are replaced with the corresponding uninterpreted function fN. The first argument of
fN is ωb(tn), indicating the symbolic bit-width of the last argument of fBV. The remain-
ing arguments are obtained by recursively calling CONV on t1, . . . , tn. In all cases, ωb(tn)
corresponds to the bit-width that the uninterpreted function fN expects, based on its in-
tended semantics (the bit-width of the second argument for bit-vector concatenation, or of

2 Our implementation of the translation does consider the general case since quantified formulas appear in
the first of the case studies we discuss in Section 5.

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 9

an arbitrary argument for all other function and predicate symbols). Finally, CONV applies
homomorphically to all terms whose top symbol is a Boolean connective.

CONV runs the auxiliary conversion function ELIM on all applications of uninterpreted
functions fN introduced during the conversion. ELIM eliminates a majority of functions
corresponding to bit-vector operators as these functions are equivalently expressed using in-
teger arithmetic and pow2. Specifically, the ternary addition operation +N, which represents
addition of two bit-vectors with their width k specified as the first argument, is translated to
integer addition modulo pow2(k). The translation of subtraction −N and multiplication ·N
applications is similar. For the division and remainder operations divN and modN, CONV

handles the special case where the second argument is zero, consistently with the semantics
of bit-vectors operators in the SMT-LIB 2 standard. The integer operators corresponding
to unary (arithmetic) negation and bitwise negation can be eliminated in a straightforward
way. The semantics of various bitwise shift operators can be defined arithmetically using
division and multiplication with pow2(k). Arithmetic shift right >>aN can be defined in
terms of other bit-vector operators and hence can be eliminated based on this definition.
Concatenation can be eliminated by multiplying its first argument x by pow2(k) (recall that
k is the bit-width of the second argument y) which has the effect of shifting x left by k bits,
as expected. The unsigned relation symbols can be directly converted to the corresponding
integer relation. For the elimination of signed relation symbols we use an auxiliary helper
uts (unsigned to signed), also defined in Figure 1, which returns the interpretation of its
argument when seen as a signed value. The definition of uts can be derived based on the
semantics of signed and unsigned bit-vector values in the SMT-LIB 2 standard. Based on
this definition, we have that integers v and u that encode bit-vectors of bit-width k, satisfy
<s

N(k, u, v) if and only if they satisfy utsk(u) < utsk(v).

Example 2 As an example of our translation, let ϕ = (x+BVx)+BVz1 6≈ z0, ωN(z0) = 0,
ωN(z1) = 1, and ωb(x) = ωb(z0) = ωb(z1) = a from Example 1. Then, the result of
CONV(ϕ, (ωb, ωN)) is

ELIM(+N(a, ELIM(+N(a, χ(x), χ(x))), 1 mod pow2(a))) 6≈ 0 mod pow2(a) .

After applying ELIM and simplifying, we get (χ(x) + χ(x) + 1) mod pow2(a) 6≈ 0.

Thanks to the application of ELIM, we have that all formulas generated by CONV contain
only uninterpreted function symbols in the set F = {pow2,&N, |N,⊕N}. Thus, we restrict
our attention to these symbols only in our axiomatization AXA, described next. From now
on we denote TFUFIA by TUFIA.

Axiomatization Modes We consider four different axiomatization modes A, which we
call full , partial , comb , and qf (quantifier-free). These induce four different translations,
namely: Tfull, Tpartial, Tcomb, and Tqf. For each of these modes, we define AXA(ϕ, ω) as the
conjunction:∧
x∈FV(ϕ)

0 ≤ χ(x) < pow2(ωb(x)) ∧ (
∧

w∈FV(ω)

w > 0) ∧AXpow2
A ∧AX&N

A ∧AX
|N
A ∧AX⊕

N
A

The first conjunction states that all integer variables introduced for parametric bit-vector
variables x reside in the range specified by their bit-width. The second conjunction states
that all free variables in ω (denoting bit-widths) are positive. The remaining four conjuncts

10 Aina Niemetz et al.

� AX�full

pow2 pow2(0) ≈ 1 ∧ ∀k. k > 0⇒ pow2(k) ≈ 2 · pow2(k − 1)

&N
∀k, x, y. &N(k, x, y) ≈
ite(k > 1,&N(k − 1, x mod pow2(k − 1), y mod pow2(k − 1)), 0) +
pow2(k − 1) ·min(exk−1(x), exk−1(y))

|N
∀k, x, y.|N(k, x, y) ≈
ite(k > 1, |N(k − 1, x mod pow2(k − 1), y mod pow2(k − 1)), 0)
+pow2(k − 1) ·max(exk−1(x), exk−1(y))

⊕N
∀k, x, y.⊕N(k, x, y) ≈
ite(k > 1,⊕N(k − 1, x mod pow2(k − 1), y mod pow2(k − 1)), 0) +
pow2(k − 1) · |exk−1(x)− exk−1(y)|

Table 2 Full axiomatization of pow2, &N, |N, and ⊕N. We use exi(x) for (x div pow2(i)) mod 2,
min(x, y) for ite(x < y, x, y), and max(x, y) for ite(x < y, y, x).

� axiom AX�partial

pow2

base cases pow2(0) ≈ 1 ∧ pow2(1) ≈ 2 ∧ pow2(2) ≈ 4 ∧ pow2(3) ≈ 8
weak monotonicity ∀i∀j. i ≤ j ⇒ pow2(i) ≤ pow2(j)
strong monotonicity ∀i∀j. i < j ⇒ pow2(i) < pow2(j)
modularity ∀i∀j∀x. (x · pow2(i)) mod pow2(j) 6≈ 0⇒ i < j
never even ∀i∀x. pow2(i)− 1 6≈ 2 · x
always positive ∀i. pow2(i) ≥ 1
div 0 ∀i. i div pow2(i) ≈ 0

&N

base case ∀x∀y. &N(1, x, y) ≈ min(ex0(x), ex0(y))
max ∀k∀x. &N(k, x,maxNk) ≈ x
min ∀k∀x. &N(k, x, 0) ≈ 0
idempotence ∀k∀x. &N(k, x, x) ≈ x
contradiction ∀k∀x. &N(k, x,∼ N(k, x)) ≈ 0
symmetry ∀k∀x∀y. &N(k, x, y) ≈&N(k, y, x)
difference ∀k∀x∀y∀z. x 6≈ y ⇒&N(k, x, z) 6≈ y∨ &N(k, y, z) 6≈ x
range ∀k∀x∀y. 0 ≤&N(k, x, y) ≤ min(x, y)

|N

base case ∀x∀y.|N(1, x, y) ≈ max(ex0(x), ex0(y))

max ∀k∀x.|N(k, x,maxNk) ≈ maxNk
min ∀k∀x.|N(k, x, 0) ≈ x
idempotence ∀k∀x.|N(k, x, x) ≈ x
excluded middle ∀k∀x.|N(k, x,∼ N(k, x)) ≈ maxNk
symmetry ∀k∀x∀y.|N(k, x, y) ≈ |N(k, y, x)
difference ∀k∀x∀y∀z.x 6≈ y ⇒ |N(k, x, z) 6≈ y ∨ |N(k, y, z) 6≈ x
range ∀k∀x∀y.max(x, y) ≤ |N(k, x, y) ≤ maxNk

⊕N

base case ∀x∀y.⊕N(1, x, y) ≈ ite(ex0(x) ≈ ex0(y), 0, 1)
zero ∀k∀x.⊕N(k, x, x) ≈ 0
one ∀k∀x.⊕N(k, x,∼ N(k, x)) ≈ maxNk
symmetry ∀k∀x∀y.⊕N(k, x, y) ≈ ⊕N(k, y, x)
range ∀k∀x∀y. 0 ≤ ⊕N(k, x, y) ≤ maxNk

Table 3 Partial axiomatization of pow2, &N, and ⊕N. We use maxNk for pow2(k)− 1.

denote the axiomatizations for the four uninterpreted functions that may occur in the output
of the conversion function. The definitions of these formulas are given in Tables 2 and 3
for axiomatizations full and partial respectively. For each axiom, i, j, k denote bit-widths
and x, y denote integers that encode bit-vectors of size k. We assume guards on all quanti-
fied formulas (omitted for brevity) that constrain i, j, k to be positive and x, y to be in the
range {0, . . . , pow2(k) − 1}. Each table entry lists a set of formulas (interpreted conjunc-

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 11

tively) that state properties about the intended semantics of these operators. The formulas
for axiomatization mode full assert the intended semantics of these operators, whereas those
for partial assert several properties of them. Axiomatization comb asserts both, and mode
qf takes only the formulas in axiomatization partial that are quantifier-free. In particular,
AXpow2

qf corresponds to the base cases listed in partial , and AX�qf for the other operators is
simply >. The partial axiomatization of these operations mainly includes natural properties
of them. For example, we include some base cases for each operation, and also the ranges of
its inputs and output. For some proofs, these are sufficient. For operators &N, |N and ⊕N we
also include behavior for specific cases, e.g., &N(k, a, 0) = 0 and its variants. Other axioms
(e.g., “never even”) were added after analyzing specific benchmarks to identify sufficient
axioms for their proofs.

4.2 Correctness

Our translation satisfies the following key properties.

Theorem 1 Let ϕ be a parametric bit-vector formula that is well-sorted under ω and has
no occurrences of operator bit-vector extract or concrete bit-vector constants. Then, the
following hold.

1. ϕ is TBV-valid under ω if and only if Tfull(ϕ, ω) is TUFIA-valid.
2. ϕ is TBV-valid under ω if and only if Tcomb(ϕ, ω) is TUFIA-valid.
3. ϕ is TBV-valid under ω if Tpartial(ϕ, ω) is TUFIA-valid.
4. ϕ is TBV-valid under ω if Tqf(ϕ, ω) is TUFIA-valid.

We prove Theorem 1 in the remainder of this section. We start with a proof of the first
property described in the theorem, and then use this property in order to prove the others.

4.2.1 Proof of Property 1

The essence of the proof is to elevate the translation function described in Figure 1 and Ta-
ble 2 from formulas to interpretations. We start with the following definition that introduces
this translation.

Definition 1 Given an interpretation J of TIA that interprets the variables in v = FV(ω) as
positive integers, and an interpretation I of TBV, we define a corresponding interpretation
IN of TUFIA as follows:

– �IN is set to satisfy AXfull
� for any � ∈

{
pow2,&N, |N,⊕N}

– vIN = vJ for every v ∈ v
– χ(x)IN =

[
(x[c])

I]
N, where c = ωb(x)J for any x ∈ X∗

We will show that this translation between interpretations preserves satisfiability. The fol-
lowing lemmas will be useful for this purpose.

Lemma 1 Let I be an interpretation of TUFIA that satisfies AXpow2
full . Let a be a bit-vector

constant of bit-width k and n = [a]N. Then:

1. Over natural numbers, pow2I is identical to λx.2x.

In addition, I satisfies the following formulas:

12 Aina Niemetz et al.

2.
[
i◦BVa

]
N ≈ pow2(k) · i+ [a]N for any i ∈ {0, 1}.

3. n mod pow2(k − 1) ≈
[
a[k − 2 : 0]BV

]
N

4. n div 2 ≈
[
a[k − 1 : 1]BV

]
N

5. exi(n)
I = a [i], with exi(n) as (n div pow2(i))mod 2 for every 0 ≤ i ≤ k − 1.

Proof The first property follows from the standard inductive definition of the exponentiation
function. The next three properties follow from the definition of [·]N. For the last property,
we use induction on k. If k = 1 then we must have i = 0. In this case, n ∈ {0, 1}
and exi(n)

I = n = [a [0]]N. Suppose k > 1. If i = 0, then this is shown similarly
to the base case. Otherwise, a [i] corresponds to the bit in index i − 1 of the bit-vector
a[k − 1 : 1]BV. By the induction hypothesis and previous items of this lemma, the latter is
equal to exi−1(

[
a[k − 1 : 1]BV

]
N)
I = exi−1([a]N div 2)I = exi(n)

I . ut

In the following lemma, we show that the full axiomatization indeed captures (over the
natural numbers) the intended meaning of the bitwise operators.

Lemma 2 Let a and b be bit-vector constants of bit-width k, operator � ∈ {&, |,⊕}, and I
an interpretation of TUFIA that satisfies AXpow2

full ∧ AX�full. Then I satisfies
[
a�BVb

]
N ≈

�N(k, [a]N, [b]N).

Proof We prove the lemma for the case where � is & by induction on k. The other cases are
shown similarly. If k = 1, then by Lemma 1, we have (

[
a &BVb

]
N)
I = [min(a, b)]N =

min(a, b) =&N(1, [a]N, [b]N). Now, suppose k > 1. Then,

&N(k, [a]N, [b]N)
I =

(&N(k − 1, [a]N mod pow2(k − 1), [b]N mod pow2(k − 1))+

pow2(k − 1) ·min(exk−1(a), exk−1(b)))
I

By Lemma 1, we have that

min(exk−1(a), exk−1(b)) =
[
a [k − 1] &BVb [k − 1]

]
N

By the induction hypothesis and Lemma 1, we obtain that &N(k, [a]N, [b]N) is equal in I to[
a[k − 2 : 0]BV &BVb[k − 2 : 0]BV

]
N + pow2(k − 1) ·

[
a [k − 1] &BVb [k − 1]

]
N

which by Lemma 1 is equal in I to[
(a [k − 1] &BVb [k − 1])◦BV(a[k − 2 : 0]BV &BVa[k − 2 : 0]BV)

]
N =

[
a &BVb

]
N

ut

Now, we present the main lemma of the proof. It establishes a tight correspondence
between the translation of Figure 1 and Table 2 for formulas, and that of Definition 1 for
interpretations.

Lemma 3 CONV(t, ω)IN =
[
(t|ω[J])

I]
N for any parametric ΣBV-term t, interpretation

I of TBV, and J as in Definition 1.

Proof First, notice that for any x ∈ X∗ ∪ Z∗ we have that ωb(x)IN = ωb(x)J and
ωN(x)IN = ωN(x)J . Using induction, the same holds for any parametric ΣBV-term t. We
prove the lemma by induction on t.

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 13

– If t is x for some x ∈ X∗: follows from the definition of IN for this case.

– If t is z for some z ∈ Z∗:

CONV(t, ω)IN =

(ωN(z) mod pow2(ωb(z)))IN =

ωN(z)J mod pow2(ωb(z)J)

In turn, z|ω[J] is the bit-vector constant of width k = ωb(z)J whose integer value is
ωN(z)J mod 2k.

– If t is constructed from an operator other than &BV, |BV, ⊕BV, then this follows by the
semantics of the various operators as defined in the SMT-LIB 2 standard. We explicitly
show the case where t = t1 +

BVt2. In this case,

CONV(t, ω) = (CONV(t1, ω) + CONV(t2, ω)) mod pow2(ωb(t2)),

which by Lemma 1, is interpreted in IN as

((CONV(t1, ω))
IN + (CONV(t2, ω))

IN) mod 2k

for k = ωb(t2)
J . By the induction hypothesis, the latter is equal to

(
[
t1|ω[J]

I
]
N
+
[
t2|ω[J]

I
]
N
) mod 2k,

which by the semantics of +BV as defined in the SMT-LIB 2 standard, is equal to[
((t1 +

BVt2)|ω[J])
I]

N.

– The operators &BV, |BV and ⊕BV rely on Lemma 2, rather than on the SMT-LIB 2
standard. We explicitly show the case where t = t1 &BVt2. In this case,

CONV(t, ω)IN = (&N(ωb(t2),CONV(t1, ω),CONV(t2, ω)))
IN,

which by the induction hypothesis, is equal to

(&N(ωb(t2),
[
t1|ω[J]

I
]
N
,
[
t2|ω[J]

I
]
N
))IN

By Lemma 2, we obtain
[
((t1 &BVt1)|ω[J])

I]
N. ut

Using Lemma 3, we prove the correctness of the translation between interpretations:

Lemma 4 I satisfies ϕ|ω[J] iff IN satisfies Tfull(ϕ, ω).

Proof By induction on ϕ. We explicitly prove two base cases. The remaining cases are
proved similarly. Further, the induction steps (for formulas composed using the logical con-
nectives), follow directly from the induction hypothesis.

– If ϕ has the form t1 = t2, then I |= ϕ|ω[J] iff t1|Iω[J] = t2|Iω[J] iff
[
t1|Iω[J]

]
N
=[

t2|Iω[J]

]
N

iff (Lemma 3) CONV(t1, ω)
IN = CONV(t2, ω)

IN iff IN |= CONV(t1, ω) =

CONV(t2, ω) iff IN |= Tfull(t1 = t2, ω).

14 Aina Niemetz et al.

– If ϕ has the form t1<s
BVt2, then recall that the SMT-LIB 2 semantics of x<s

BVy are
given by the formula (x[k − 1 : k − 1]BV = 1 ∧ y[k − 1 : k − 1]BV = 0) ∨ (x[k − 1 :
k − 1]BV = y[k − 1 : k − 1]BV ∧ x<u

BVy). It is easy to see that this condition is
equivalent to [x]Z < [y]Z. Thus, in this case, we have that I |= ϕ|ω[J] iff

(∗)
[
t1|Iω[J]

]
Z
<
[
t2|Iω[J]

]
Z
.

Now, for any term t, utsk(
[
(t|ω[J])

I]
N) =

[
(t|ω[J])

I]
Z for every parametric bit-vector

term t with k = ωb(t). Indeed, let v = t|Iω[J]. Then, [v]N = 2k−1 · v [k − 1] +[
v[k − 2 : 0]BV

]
N and [v]Z = −2k−1 · v [k − 1] +

[
v[k − 2 : 0]BV

]
N. Adding these

two equations and simplifying, we get [v]Z = 2 ·
[
v[k − 2 : 0]BV

]
N− [v]N = [v]N mod

2k−1 − [v]N = utsk([v]N). Hence, condition (∗) above holds iff utsk(
[
t1|Iω[J]

]
N
) <

utsk(
[
t2|Iω[J]

]
N
), with k = ωb(t1)

J iff (by Lemma 3) utsk(CONV(t1, ω)
IN) <

utsk(CONV(t2, ω)
IN) iff IN |= Tfull(ϕ, ω).

ut

Finally, we can collect all the pieces and prove the correctness of the full translation
between formulas.

Proof (of Property 1 of Theorem 1)

(⇐): Suppose ϕ is not TBV-valid under ω. Then there exists a TIA-interpretation J that maps
variables in v to positive integers such that ϕ|ω[J] is not TBV-valid. Hence, there exists
an interpretation I of TBV such that I 6|= ϕ|ω[J]. By Lemma 4, the constructed inter-
pretation IN of TUFIA does not satisfy Tfull(ϕ, ω). Hence, Tfull(ϕ, ω) is not TUFIA-valid.

(⇒): Suppose Tfull(ϕ, ω) is not TUFIA-valid. Then there exists an interpretation I of TUFIA

such that I 6|= Tfull(ϕ, ω). We define a IA-interpretation J such that ϕ|ω[J] is not TBV-
valid, by setting xJ = xI for each x ∈ FV(ω). Translation Tfull(ϕ, ω) is an implication
whose left size is a conjunction whose first two conjuncts are:

∧
x∈FV(ϕ) 0 ≤ χ(x) <

pow2(ωb(x)) (denoted A) and
∧
w∈FV(ω) w > 0 (denoted B). Notice that J maps

the variables in FV(ω) to positive integers, as I |= B. To show that ϕ|ω[J] is not

TBV-valid, we define a TBV-interpretation IBV by setting xIBV
[c] =

[
χ(x)I

]
N
−1

k
, where

c = ωb(x)J and [.]N
−1
.

can be considered as an “inverse” of [.]N. Concretely, if 0 ≤
y < 2k, then there is a unique bit-vector x with minimal width such that [x]N = y.
If this minimal width is at most k, then [y]N

−1
k

is that bit-vector, padded with zeros to
width k. Otherwise, [y]N

−1
k

is undefined. In the case of I above, every usage of [.]N
−1
.

is defined, thanks to the fact that I |= A. It can be easily shown that IBVN = I. By
Lemma 4, since I 6|= Tfull(ϕ, ω), we have that IBV 6|= ϕ|ω[J].

ut

4.2.2 Proof of Properties 2 – 4

The rest of the properties follow from Property 1 by showing that the axioms in Table 3 are
valid in every interpretation of TUFIA that satisfies AXfull(ϕ, ω).

The axioms of pow2 easily follow from simple properties of exponentiation. As for the
bitwise logical operators, we explicitly prove the validity of “difference” for &N. The rest

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 15

are shown similarly. Let k > 0, 0 ≤ x, y, z < 2k, and let I be an interpretation of TUFIA

that satisfies AXfull(ϕ, ω). Note that k, x, y and z are integer constants, and are therefore
interpreted as themselves in I. Let a, b and c be bit-vectors of width k such that x = [a]N,
y = [b]N and z = [c]N. Suppose I satisfies x 6≈ y. Then a 6≈ b, and so there exists
some 0 ≤ i ≤ k − 1 such that a [i] 6≈ b [i]. First, suppose a [i] = 0. Then b [i] = 1
and (a &BVc) [i] = 0, and hence, a &BVc 6≈ b. This means that

[
a &BVc

]
N 6≈ [b]N, and

thus, by Lemma 2, we have that I satisfies &N(k, x, z) 6≈ y. Otherwise, a [i] = 1 and
b [i] = 0. If a &BV c ≈ b then c [i] = 0, which means that (b &BVc) [i] = 0 and so
b &BVc 6≈ a. This means that

[
b &BVc

]
N 6≈ [a]N, and thus by Lemma 2, we have that I

satisfies &N(k, y, z) 6≈ x. ut

5 Case Studies

We apply the techniques from Section 4 to three case studies:

1. the verification of invertibility conditions from Niemetz et al. [22];
2. the verification of compiler optimizations as generated by Alive [20]; and
3. the verification of rewrite rules that are used in SMT solvers.

For these case studies, we consider a set of verification conditions that originally use fixed-
size bit-vectors, and exclude formulas involving multiple bit-widths. This restriction simpli-
fies the implementation but is interesting enough as each case study includes many verifica-
tion conditions of this sort. Generalizing the framework beyond this restriction is technical
but straightforward, and is left for future work. In essence, such an extension amounts to
including the well-sortedness conditions of the underlying mappings ω in the translated
benchmarks (e.g., equalities between bit-width variables that are associated with paramet-
ric bit-vector variables that occur under the same operator). For the case studies that we
consider here, such extra constraints are trivial.

For each formula φ, we first produce a parametric version ϕ by replacing each variable
in φ by a fresh x ∈ X∗ and each (concrete) bit-vector constant by a fresh z ∈ Z∗. We
define ωb(x) = ωb(z) = k for a fresh integer variable k and let ωN(z) be the integer value
corresponding to the bit-vector constant it replaced. We then define ω = (ωb, ωN) and
invoke our translation from Section 4 on the parametric bit-vector formula ϕ. If the resulting
formula is valid, the original verification condition holds independently of the original bit-
width. In each case study, we report on the success rates of determining the validity of
these formulas for axiomatization modes full , partial , comb , and qf . Overall, axiomatization
mode comb yields the best results.

All experiments described below require an SMT solver with support for the SMT-LIB 2
logic UFNIA. We used all three participants in the UFNIA division of the 2018 SMT com-
petition: CVC4 [2] (GitHub master 6eb492f6), Z3 [10] (version 4.8.4), and Vampire [16]
(GitHub master d0ea236). Z3 and CVC4 use various strategies and techniques for quantifier
instantiation including E-matching [21], and enumerative [28] and conflict-based [31] in-
stantiation. For non-linear integer arithmetic, CVC4 uses an approach based on incremental
linearization [8,9,30]. Vampire is a superposition-based theorem prover for first-order logic
based on the AVATAR framework [35], which has been extended to support some theories,
including integer arithmetic [27]. We performed all experiments on a cluster with Intel Xeon
E5-2637 CPUs with 3.5GHz and 32GB of memory. We imposed a time limit of 300 seconds

16 Aina Niemetz et al.

(wallclock) and a memory limit of 4GB for each solver/benchmark pair.3 We consider a
bit-width independent property to be proved if at least one solver proved it for at least one
of the axiomatization modes. The solving time reported does not include the (negligible)
translation time, as the translation for all benchmarks was performed before running the
experiments on the translated benchmarks.4

5.1 Verifying Invertibility Conditions

Niemetz et al. [22] present a technique for solving quantified bit-vector formulas that uti-
lizes invertibility conditions to generate symbolic instantiations. Intuitively, an invertibility
condition φc for a literal `[x] is the exact condition under which `[x] has a solution for x,
i.e., φc ⇔ ∃x.`[x] is TBV-valid. For example, consider bit-vector literal x &BVs ≈ t with
x 6∈ FV(s) ∪ FV(t); then, the invertibility condition for x is t &BV s ≈ t. The authors
define invertibility conditions for a representative set of literals having a single occurrence
of x that involve the bit-vector operators listed in Table 1, excluding extraction, as the in-
vertibility condition for the latter is trivially >. A considerable number of these conditions
were determined by leveraging Syntax-Guided Synthesis (SyGuS) techniques [1]. The au-
thors further verified the correctness of all conditions for bit-widths 1 to 65. However, a
bit-width-independent proof of correctness of these conditions was left to future work. In
the following, we apply the techniques of Section 4 to tackle this problem. Note that for this
case study, we exclude operators involving multiple bit-widths, namely bit-vector extraction
and concatenation. For the former, all invertibility conditions are >, and for the latter it is
easy to produce a hand-written parametric proof of correctness of its invertibility conditions.

Proving Invertibility Conditions Let `[x] be a bit-vector literal of the form �x ./ t or
x � s ./ t (dually, s � x ./ t), with operators � and relations ./ as defined in Table 1. To
prove the correctness of an invertibility condition φc for x independent of the bit-width, we
have to prove the validity of the formula:

φc ⇔ ∃x.`[x], (1)

where occurrences of the variables s and t are implicitly universally quantified. We then
want to prove that Equation (1) is TBV-valid underω. Considering the two directions of Equa-
tion (1) separately, we get:

∃x.`[x, s, t]⇒ φc[s, t] (rtl)

and
φc[s, t]⇒ ∃x.`[x, s, t]. (ltr)

The validity of (rtl) is equivalent to the unsatisfiability of the quantifier-free formula:

`[x, s, t] ∧ ¬φc[s, t]. (rtl’)

Eliminating the quantifier in (ltr) is much trickier. It typically amounts to finding a symbolic
value for x such that `[x, s, t] holds provided that φc[s, t] holds. We refer to such a symbolic
value as a conditional inverse.

3 On preliminary experiments we observed that higher time limits did not increase the overall success rate
of the case studies.

4 All benchmarks, results, log files, and solver configurations are available at http://cvc4.cs.
stanford.edu/papers/CADE2019-JAR/.

https://orcid.org/0000-0003-2600-5283
http://cvc4.cs.stanford.edu/papers/CADE2019-JAR/
http://cvc4.cs.stanford.edu/papers/CADE2019-JAR/

Towards Satisfiability Modulo Parametric Bit-vectors 17

Literal ≈ 6≈ <u ≤u >u ≥u

−x ./ t −t ∼t 0 0 ∼t −t
∼x ./ t ∼t t −t ∼t 0 0

x +s ./ t t−s ∼(s + t) −s −s ∼s ∼s
x &s ./ t t ∼t 0 t s s

x >>as ./ t ∼t 0 0 ∼0 ∼0

s >>ax ./ t t >>s− t ∼(s |maxs) ∼(s |maxs) s &mins s &mins
x >>s ./ t t <<s mins <<t s s ∼s ∼s
s >>x ./ t −t s s 0 0

x ·s ./ t maxs <<t 0 0

x | s ./ t t ∼t s s ∼s t

x <<s ./ t t >>s maxs <<t 0 0 ∼0 ∼0

s <<x ./ t t mins mins
x div s ./ t s · t s >>t 0 t ∼0

s div x ./ t t &mins ∼0 ∼0 0 0

x mod s ./ t t −∼t s s ∼ −s t

s mod x ./ t s− t t s s 0 0

Table 4 Conditional inverses for relations ./ in {≈, 6≈, <u,≤u, >u,≥u}.

Conditional Inverses Given an invertibility condition φc for x in bit-vector literal `[x], we
say that a term αc is a conditional inverse for x if φc ⇒ `[αc] is TBV-valid. For example, in
literal (x |BVs)≤u

BVt, the term s itself is a conditional inverse for x: given that there exists
some x such that (x |BVs)≤u

BVt, we have that (s |BVs)≤u
BVt. When a conditional inverse

αc for x is found, we may replace (ltr) by:

φc ⇒ `[αc] (ltr’)

Clearly, (ltr’) implies (ltr). However, the converse may not hold, i.e., there may be models
that falsifiy (ltr’) without falsifying (ltr). Notice that if the invertibility condition for x is
>, the conditional inverse is in fact unconditional. The problem of finding a conditional
inverse for a bit-vector literal x � s ./ t (dually, s � x ./ t) can be defined as a SyGuS
problem by asking whether the (second-order) formula ∃C∀s∀t.φc ⇒ C(s, t) � s ./ t
is satisfiable, where C is a binary function symbol. If such a function C is found, then
it is in fact a conditional inverse for x in `[x]. We synthesized conditional inverses for x
in `[x] for bit-width 4 with variants of the grammars used in [22] to synthesize invertibility
conditions. For each grammar, we generated 160 SyGuS problems, one for each combination
of bit-vector operator and relation from Table 1 except for extraction and concatenation,
counting commutative cases only once. We used the SyGuS solver CVC4SY [29] to solve
these problems, and out of 160, we were able to synthesize candidate conditional inverses
for 143 invertibility conditions. For 12 out of these 143, we found that the synthesized terms
were not conditional inverses for every bit-width by checking (ltr’) for bit-widths up to 64.

Tables 4 and 5 list all verified conditional inverses that we found. Note that we omitted
superscript BV from all bit-vector symbols for better readability. The synthesized condi-
tional inverses are useful for bit-width independent verification of the correctness of the in-
vertibility conditions. In addition, they are interesting in their own right: they provide more
constructive information about bit-vector literals by showing a concrete term for a general
solution, which is an improvement compared to [22], where a formula that states the ex-
istence of such a solution was synthesized, without necessarily showing how to construct
such a solution. We plan to study the affect of these more specific solutions in the context of
quantifier instantiation, and to compare it to the technique of [22].

18 Aina Niemetz et al.

Literal <s ≤s >s ≥s

−x ./ t mins mins ∼t −t
∼x ./ t maxs maxs mins mins

x +s ./ t mins −s t−s maxs −s t−s
x &s ./ t mins t maxs maxs

x >>as ./ t mins mins maxs maxs
s >>ax ./ t ∼(s |maxs) ∼(s |maxs) s &mins s &mins
x >>s ./ t mins <<s t maxs <<s t <<s

s >>x ./ t ∼(s |maxs) ∼(s |maxs)
x ·s ./ t
x | s ./ t mins mins maxs t

x <<s ./ t mins >>s t >>s maxs >>s maxs >>s
s <<x ./ t

x div s ./ t ∼ − t t

s div x ./ t

x mod s ./ t ∼(maxs | −s) t &mins −∼t t

s mod x ./ t t s− t
(s |mins)−

(maxs & t−maxs)

(s |mins)−
(t &maxs)

Table 5 Conditional inverses for relations ./ in {<s,≤s, >s,≥s}.

`[x] ≈ 6≈ <u
BV >u

BV ≤u
BV ≥u

BV <s
BV >s

BV ≤s
BV ≥s

BV

−BVx ./ t X X X X X X X X X X
∼BVx ./ t X X X X X X X X X X
x &BVs ./ t Õ X X X X X Õ Õ 5 Õ

x |BVs ./ t Õ X X X X X Õ 5 Õ 5

x<<BVs ./ t Õ

Õ

X Õ X Õ Õ 5

Õ

5

s<<BVx ./ t X X X X X X

Õ

X

Õ

X
x>>BVs ./ t X X X Õ X X X Õ X Õ
s>>BVx ./ t X X X X X X X X X X
x >>aBV s ./ t 5 X X X X X Õ X Õ X
s >>aBVx ./ t X X

Õ Õ Õ Õ Õ

5

Õ

X
x+BVs ./ t X X X X X X X X X X
x ·BVs ./ t 5

Õ

X 5 X 5 5 5

Õ

5

x divBVs ./ t X X X X X

Õ

X X X X
s divBVx ./ t X

Õ

X X X X X

Õ

X

Õ

xmodBVs ./ t X X X X X X 5 X

Õ

X
smodBVx ./ t Õ X X X X X X

Õ

X

Õ

Table 6 Invertibility conditions verification. X means was fully proved, Õ means only left-to-right proved,

Õmeans only right-to-left proved, 5 means not proved.

Results Table 6 summaries the results of verifying invertibility conditions. For each invert-
ibility condition, it states whether it was fully proved, only one direction of it was proved,
or none of the directions were proved. Table 7 provides detailed information on the results
for the axiomatization modes full , partial , and qf discussed in Section 4.

We use Õ and Õto indicate that only direction left-to-right (ltr or ltr’) or right-to-
left (rtl’) were proved, and X and 5 to indicate that both or none of the directions were
proved. Additionally, we use Õαc

(resp. Õnoαc
) to indicate that for direction left-to-right,

formula (ltr’) (resp. (ltr)) was proved with (resp. without) plugging in a conditional inverse.

https://orcid.org/0000-0003-2600-5283

Towards Satisfiability Modulo Parametric Bit-vectors 19

Axiomatization X

Õ

Õ 5 Õαc Õnoαc

full 64 18 22 56 72 51
partial 76 14 26 44 78 81

qf 40 22 22 76 50 51
comb 104 21 18 17 99 79

Total (160) 110 19 17 14 102 94

Table 7 Invertibility condition verification using axiomatization modes comb , full , partial , and qf . Column
Õαc (Õnoαc) counts left-to-right proved with (without) conditional inverse.

Overall, out of 160 invertibility conditions, we were able to fully prove 110, and for
19 (resp. 17) conditions we were able to prove only direction rtl’ (resp. ltr’). For direction
right-to-left, 129 formulas (rtl’) overall were successfully proved to be unsatisfiable. Out
of these 129, 32 formulas were actually trivial since the invertibility condition φc was >.
For direction left-to-right, overall, 127 formulas were proved successfully, and out of these,
102 (resp. 94) were proved using (resp. not using) a conditional inverse. Furthermore, 33
formulas could only be proved when using a conditional inverse. Thus, using conditional
inverses was helpful for proving the correctness of invertibility conditions. Interestingly, the
opposite was also observed: 11 invertibility conditions for which conditional inverses were
found, were not proven using conditional inverses, but were proven without them. This could
be explained by the fact that even though conditional inverses eliminate a quantifier (thus
making the problem easier), they produce a stronger formula, as (ltr’) implies (ltr) (thus
making the problem harder).

Considering the different axiomatization modes, overall, with 104 fully proved and only
17 unproved instances, axiomatization comb performed best. Interestingly, even though ax-
iomatization qf only includes some of the base cases of axiomatization partial , it still per-
forms well. This may be due to the fact that in many cases, the correctness of the invertibility
condition does not rely on any particular property of the operators involved. For example,
the invertibility condition φc for literal x &BVs ≈ t is t &BVs ≈ t. Proving the correctness
of φc amounts to coming up with the right substitution for x without relying on any partic-
ular axiomatization of &N. In contrast, the invertibility condition φc for literal x &BVs 6≈ t
is t 6≈ 0 ∨ s 6≈ 0. Proving the correctness of φc relies on axioms regarding &BV and ∼ BV.
Specifically, we have found that from axiomatization partial , it suffices to keep “min” and
“idempotence” to prove φc in that case.

The project of verifying invertibility conditions for arbitrary bit-widths was recently ex-
tended by Ekici et al. [12], where a representative subset consisting of 11 invertibility con-
ditions out of the 50 that were not proven by our approach were proven semi-automatically
using the Coq proof assistant, building on a library for SMT-LIB 2 bit-vectors previously
developed by Ekici et al. [11].

5.2 Verifying Alive Optimizations

Lopes et al. [20] introduces Alive, a tool for proving the correctness of compiler peephole
optimizations. Alive has a high-level language for specifying optimizations. The tool takes
as input a description of an optimization in this high-level language and then automatically
verifies that applying the optimization to an arbitrary piece of source code produces opti-
mized target code that is equivalent under a given precondition. It can also automatically
translate verified optimizations into C++ code that can be linked into LLVM [19]. For each

20 Aina Niemetz et al.

Family Considered Proved
full partial qf comb Total

AddSub (52) 16 7 7 7 9 9
MulDivRem (29) 5 1 2 1 3 3
AndOrXor (162) 124 57 55 53 60 60

Select (51) 26 15 11 11 16 16
Shifts (17) 9 0 0 0 0 0

LoadStoreAlloca (9) 0 0 0 0 0 0

Total (320) 180 80 75 72 88 88

Table 8 Alive optimizations verification using axiomatizations comb , full , partial and qf .

optimization, Alive generates four constraints that encode the following properties, assum-
ing that the precondition of the optimization holds:

1. Memory Source and Target yield the same state of memory after execution.
2. Definedness The target is well-defined whenever the source is.
3. Poison The target produces so-called poison values (caused by LLVM’s nsw, nuw, and

exact attributes) only when the source does.
4. Equivalence Source and target yield the same result after execution.

From these verification tasks, Alive can generate benchmarks in SMT-LIB 2 format in the
theory of fixed-size bit-vectors, with and without quantifiers. For each task, types are instan-
tiated with all possible valid type assignments (for integer types up to a default bound of 64
bits). In the following, we apply our techniques from Section 4 to prove Alive verification
tasks independently from the bit-width. For this, as in Lopes et al. [20], we consider the set
of optimizations from the instcombine optimization pass of LLVM, provided as Alive trans-
lations (433 total).5 Of these 433 optimizations, 113 are dependent on a specific bit-width;
thus, we focus on the remaining 320. We further exclude optimizations that do not comply
with the following criteria:

– In each generated SMT-LIB 2 file, only a single bit-width is used.
– All SMT-LIB 2 files generated for a property (instantiated for all possible valid type as-

signments) must be identical modulo the bit-width (excluding, e.g., bit-width dependent
constants other than 0, 1 and (un)signed min/max).

As a useful exception to the first criterion, we included instances where all terms of bit-width
1 can be interpreted as Booleans. Overall, we consider bit-width independent verification
conditions 1–4 for 180 out of 320 optimizations. None of these include memory operations
or poison values, and only some have definedness constraints (and those are simple). We
thus only consider the equivalence verification conditions for these 180 optimizations.

Results Table 8 summarizes the results of verifying the equivalence constraints for the se-
lected 180 optimizations from the instcombine LLVM optimization pass. The first column
lists all families with the number of bit-width independent optimizations per family (320 to-
tal). The second column indicates how many in each family were in the set of 180 considered
optimizations, and the remaining columns show how many of those considered were proved
with each axiomatization mode.

Overall, out of 180 equivalence verification conditions, we were able to prove 88. Our
techniques were most successful for the AndOrXor family. This is not surprising, since

5 At https://github.com/nunoplopes/alive/tree/master/tests/instcombine

https://orcid.org/0000-0003-2600-5283
https://github.com/nunoplopes/alive/tree/master/tests/instcombine

Towards Satisfiability Modulo Parametric Bit-vectors 21

many verification conditions of this family require only Boolean reasoning and basic prop-
erties of ordering relations that are already included in the theory TIA. For example, given
bit-vector term a and bit-vector constants C1 and C2, optimization AndOrXor:979 from
instcombine essentially rewrites (a<s

BVC1 ∧ a<s
BVC2) to a<s

BVC1, provided that pre-
condition C1<s

BVC2 holds. To prove its correctness, it suffices to apply the transitivity of
<s

BV with Boolean reasoning. The same holds when lifting this equivalence to the integers,
deducing the transitivity of <sN from that of the builtin < relation of TIA.

None of the 9 instances from the Shifts family were proven. These instances are more
complicated than others, since they combine bitwise and arithmetical operations and thus
rely on the axiomatization of these operators. Solving the instances from the Shifts family
is an interesting challenge for future work. Adding specialized axioms to axiomatization
partial is one promising approach.

Interestingly, for this case study, the results from the different axiomatization modes
are very similar. This can again be explained by the fact that many optimizations rely on
properties of the integers that are already included in TIA, without requiring any particular
property of functions pow2, &N, |N and ⊕N (as in the above example).

Note that we have also tried using our approach for proving the equivalence verification
conditions for up to a bit-width of 64. This was done by adding an assertion of the form
0 < k ≤ 64 for the bit-width variable k. However, all optimizations that were proven
correct this way were already proven correct for arbitrary bit-widths, which suggests that
this restriction did not make the input problem easier for the solvers.

5.3 BV Rewriting

SMT solvers for the theory of fixed-size bit-vectors heavily rely on rewriting to reduce the
size of the input formula prior to solving the problem. Since these rewrite rules are usually
implemented independently of the bit-width, verifying that they hold for any bit-width is
crucial for the soundness of the solver. For this case study, we used a feature of the SyGuS
solver in CVC4 that allows us to enumerate equivalent bit-vector terms/formulas (rewrite
candidates) for a certain bit-width up to a certain term depth (nesting level of operators) [25].
We generated 1575 pairs of equivalent bit-vector terms of depth three and 431 equivalent
pairs of formulas of depth two for bit-width 4 and translated them to integer problems with
axiomatization modes full , partial , qf , and comb , resulting in 6300+ 1724 = 8024 bench-
marks in total. Since rewrites that have been proved correct can be used to further axiomatize
the integer translation, we collected all proven rewrites after each run, added them as axioms
to the initial problems and reran the experiments. This was repeated until we reached a fix-
point, i.e., no further rewrites were proved. With this approach, we were able to prove 409
out of the 431 formula equivalences (94%) by reaching a fixpoint at the first iteration. For the
equivalent terms, we initially proved 878 out of the 1575 equivalences, which increased to
935 (59%) after adding all axioms from the first run, reaching a fixpoint after two iterations.

5.4 Summary

Summarizing these three case studies, Table 9 shows the percentage of problems that were
proved by the various solver in each case study. Numbers in parenthesis denote the total
number of SMT-LIB 2 benchmarks used in each case (including all encodings). Rows 1–
3 show the percentage of problems proved by each solver, row 4 shows the percentage of

22 Aina Niemetz et al.

Solver Invertibility (2696) Alive (720) Rewriting (8024)
CVC4 50.3% 42.6% 64.2%
Vampire 31.4% 36.2% 66.5%
Z3 33.8% 37.9% 64.2%
All solvers 23.5% 32.5% 63.8%
Some solvers 66.3% 58.0% 66.8%

Table 9 Summary of solvers performance on all generated SMT-LIB 2 benchmarks.

problems proved by all three solvers, and row 5 shows the percentage of problems that were
proved by at least one solver, which corresponds to the success rate of the virtual best solver.

6 Conclusion and Further Research

We have studied several translations from bit-vector formulas with parametric bit-width to
the theories of integer arithmetic and uninterpreted functions. The translations differ in the
way that the operator 2() and bitwise logical operators are axiomatized, namely, fully (using
their recursive definition) or partially (using some of their key properties). Our empirical
results show that state-of-the-art SMT solvers are capable of solving the translated formulas
for various benchmarks that originate from the verification of invertibility conditions, LLVM
optimizations, and rewriting rules for fixed-size bit-vectors.

In future research, we plan to investigate an implementation of our translation in a proof
assistant such as Coq, for which a bit-vector library was recently developed [11], and sup-
ports the formalization of bit-width independent properties. A verified translation to integers
can open a path to automating proofs for such properties in Coq. This will require also sup-
porting proofs in the SMT solver for non-linear arithmetic and quantifiers. We also plan to
explore satisfiable benchmarks and to consider lazy variants of the proposed translations. In
such a setting, a partitioning of the input problem into sub-problems can be beneficial, as
for each part, only the axioms that relate to the operators that occur in it will be considered.
Something similar can be done with the bounds on the variables that occur in each part. In
such an approach, we can sometimes avoid the introduction of quantifiers (which currently
are always introduced, by adding all the axioms, even if the original formula is quantifier-
free). This has potential in improving performance, and can also help with Nelson-Oppen
style combination with other theories. Finally, we are experimenting with solving fixed-
width (i.e., non-parametric) bit-vector formulas using a similar translation to integers. The
main difference, though, is that in such a case, quantification is not needed. For exponen-
tiation, the exponent is always a numeral when the original formula has only fixed-width
bit-vectors. For the bitwise operators, their corresponding axiom schemas can be instanti-
ated lazily or eagerly. Since the bit-width is known, this can be done in a complete manner.

References

1. Alur, R., Bodı́k, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., anjit A. Seshia, S., Singh, R., Solar-
Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, October 20-23, 2013, pp. 1–8 (2013)

2. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli,
C.: CVC4. In: CAV, CAV’11, pp. 171–177. Springer-Verlag (2011). URL http://dl.acm.org/
citation.cfm?id=2032305.2032319

3. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard: Version 2.0. In: A. Gupta, D. Kroening
(eds.) Proceedings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
UK) (2010)

https://orcid.org/0000-0003-2600-5283
http://dl.acm.org/citation.cfm?id=2032305.2032319
http://dl.acm.org/citation.cfm?id=2032305.2032319

Towards Satisfiability Modulo Parametric Bit-vectors 23

4. BjØrner, N.S., Pichora, M.C.: Deciding fixed and non-fixed size bit-vectors. In: B. Steffen (ed.) Tools
and Algorithms for the Construction and Analysis of Systems, pp. 376–392. Springer Berlin Heidelberg,
Berlin, Heidelberg (1998)

5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending sledgehammer with SMT solvers. J. Autom.
Reasoning 51(1), 109–128 (2013)

6. Bozzano, M., Bruttomesso, R., Cimatti, A., Franzén, A., Hanna, Z., Khasidashvili, Z., Palti, A., Se-
bastiani, R.: Encoding rtl constructs for mathsat: a preliminary report. Electronic Notes in Theoretical
Computer Science 144(2), 3 – 14 (2006). URL http://www.sciencedirect.com/science/
article/pii/S157106610600003X. Proceedings of the Third Workshop on Pragmatics of De-
cision Procedures in Automated Reasoning (PDPAR 2005)

7. Brinkmann, R., Drechsler, R.: Rtl-datapath verification using integer linear programming. In: Proceed-
ings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and
15h International Conference on VLSI Design, pp. 741–746 (2002)

8. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Experimenting on solving nonlinear integer
arithmetic with incremental linearization. In: SAT, Lecture Notes in Computer Science, vol. 10929, pp.
383–398. Springer (2018)

9. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Incremental linearization for satisfiability
and verification modulo nonlinear arithmetic and transcendental functions. ACM Trans. Comput. Log.
19(3), 19:1–19:52 (2018)

10. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’08/ETAPS’08, pp. 337–340. Springer-Verlag (2008). URL http://dl.acm.org/
citation.cfm?id=1792734.1792766

11. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett, C.: Smtcoq: a plug-in for
integrating smt solvers into coq. In: CAV, pp. 126–133. Springer (2017)

12. Ekici, B., Viswanathan, A., Zohar, Y., Barrett, C.W., Tinelli, C.: Verifying bit-vector invertibility condi-
tions in coq (extended abstract). In: PxTP, EPTCS, vol. 301, pp. 18–26 (2019)

13. Enderton, H., Enderton, H.B.: A mathematical introduction to logic. Elsevier (2001)
14. Gupta, A., Fisher, A.L.: Parametric circuit representation using inductive boolean functions. In: C. Cour-

coubetis (ed.) CAV, pp. 15–28. Springer Berlin Heidelberg, Berlin, Heidelberg (1993)
15. Gupta, A., Fisher, A.L.: Representation and symbolic manipulation of linearly inductive boolean

functions. In: CAV, ICCAD ’93, pp. 192–199. IEEE Computer Society Press, Los Alamitos, CA,
USA (1993). URL http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=
259794.259827

16. Kovács, L., Voronkov, A.: First-order theorem proving and vampire. In: CAV, Lecture Notes in Computer
Science, vol. 8044, pp. 1–35. Springer (2013)

17. Kovásznai, G., Fröhlich, A., Biere, A.: Complexity of fixed-size bit-vector logics. Theory Comput. Syst.
59(2), 323–376 (2016)

18. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View, Second Edition.
Texts in Theoretical Computer Science. An EATCS Series. Springer (2016)

19. Lattner, C., Adve, V.S.: LLVM: A compilation framework for lifelong program analysis & transforma-
tion. In: 2nd IEEE / ACM International Symposium on Code Generation and Optimization (CGO 2004),
20-24 March 2004, San Jose, CA, USA, pp. 75–88. IEEE Computer Society (2004)

20. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Provably correct peephole optimizations with
alive. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, pp. 22–32. ACM, New York, NY, USA (2015)

21. de Moura, L.M., Bjørner, N.: Efficient e-matching for SMT solvers. In: Automated Deduction - CADE-
21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Pro-
ceedings, pp. 183–198 (2007)

22. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: Solving quantified bit-vectors using
invertibility conditions. In: H. Chockler, G. Weissenbacher (eds.) CAV, Lecture Notes in Computer
Science, vol. 10982, pp. 236–255. Springer (2018)

23. Niemetz, A., Preiner, M., Reynolds, A., Zohar, Y., Barrett, C.W., Tinelli, C.: Towards bit-width-
independent proofs in SMT solvers. In: CADE, Lecture Notes in Computer Science, vol. 11716, pp.
366–384. Springer (2019)

24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-order logic, vol. 2283.
Springer Science & Business Media (2002)

25. Nötzli, A., Reynolds, A., Barbosa, H., Niemetz, A., Preiner, M., Barrett, C.W., Tinelli, C.: Syntax-guided
rewrite rule enumeration for SMT solvers. In: SAT, Lecture Notes in Computer Science, vol. 11628, pp.
279–297. Springer (2019)

http://www.sciencedirect.com/science/article/pii/S157106610600003X
http://www.sciencedirect.com/science/article/pii/S157106610600003X
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827
http://dl.acm.org.stanford.idm.oclc.org/citation.cfm?id=259794.259827

24 Aina Niemetz et al.

26. Pichora, M.C.: Automated reasoning about hardware data types using bit-vectors of symbolic lengths.
Ph.D. thesis, Toronto, Ont., Canada, Canada (2003). AAINQ84686

27. Reger, G., Suda, M., Voronkov, A.: Unification with abstraction and theory instantiation in saturation-
based reasoning. In: Tools and Algorithms for the Construction and Analysis of Systems - 24th Interna-
tional Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part I, pp. 3–22 (2018)

28. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In: Tools and Algorithms
for the Construction and Analysis of Systems - 24th International Conference, TACAS 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II, pp. 112–131 (2018)

29. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C.W., Tinelli, C.: cvc4sy: Smart and fast term enumeration
for syntax-guided synthesis. In: I. Dillig, S. Tasiran (eds.) CAV, Lecture Notes in Computer Science, vol.
11562, pp. 74–83. Springer (2019)

30. Reynolds, A., Tinelli, C., Jovanovic, D., Barrett, C.: Designing theory solvers with extensions. In: Fron-
tiers of Combining Systems - 11th International Symposium, FroCoS 2017, Brası́lia, Brazil, September
27-29, 2017, Proceedings, pp. 22–40 (2017)

31. Reynolds, A., Tinelli, C., de Moura, L.M.: Finding conflicting instances of quantified formulas in SMT.
In: Formal Methods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October 21-24,
2014, pp. 195–202 (2014)

32. Solidity Language Developers: Solidity (2018). URL https://solidity.readthedocs.io/
en/v0.4.25/

33. development team, T.C.: The coq proof assistant reference manual version 8.9 (2019). URL https:
//coq.inria.fr/distrib/current/refman/

34. Tinelli, C., Zarba, C.G.: Combining decision procedures for sorted theories. In: J.J. Alferes, J. Leite (eds.)
Logics in Artificial Intelligence, pp. 641–653. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

35. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: CAV, Lecture Notes in
Computer Science, vol. 8559, pp. 696–710. Springer (2014)

36. Zhihong Zeng, Kalla, P., Ciesielski, M.: Lpsat: a unified approach to rtl satisfiability. In: Proceedings
Design, Automation and Test in Europe. Conference and Exhibition 2001, pp. 398–402 (2001)

https://orcid.org/0000-0003-2600-5283
https://solidity.readthedocs.io/en/v0.4.25/
https://solidity.readthedocs.io/en/v0.4.25/
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/

	Introduction
	Preliminaries
	Parametric Bit-Vector Formulas
	Encoding Parametric Bit-Vector Formulas in SMT
	Case Studies
	Conclusion and Further Research

